KTT Hierarchical Classification System
Contents:
Usage
Installation
Downloading
Setting up dependencies
Quickstart
Data preparation
Training a model
Exporting the trained model
Serving up a Bento
Shipping Bentos in a container
CLI usage
Adapters
System design
Data adapters
Intermediate format specification
Parquet schema
Hierarchy JSON schema
Theory
The SQL adapter
The flatfile adapter
Training stage
The process
Classes
Common classes
PyTorch utilities
Scikit-learn utilities
Exporting your models
ONNX exporting
BentoML exporting
Packaging
Encoders
DistilBERT
API
Scikit-learn text feature extractors
API
Prebuilt models
Tf-idf + Leaf SGD
API
Configuration schema
Default tuning configuration
Theory
Tf-idf + Hierarchy SGD
API
Configuration schema
Default tuning configuration
Theory
DB-BHCN
API
Configuration schema
Default tuning configuration
Checkpoint schema
Theory
DB-BHCN
DB-BHCN+AWX
API
Configuration schema
Default tuning configuration
Checkpoint schema
Theory
DistilBERT + Adapted HMCN-F
API
Configuration schema
Default tuning configuration
Checkpoint schema
Theory
DistilBERT + Adapted C-HMCNN
API
Configuration schema
Default tuning configuration
Checkpoint schema
Theory
DistilBERT + Linear
API
Configuration schema
Checkpoint schema
Theory
Developing new encoders
Where encoders come in
Adding encoders
Implementing preprocessors
Developing new models
Frameworks
General model folder structure
The model itself
Checkpointing
Preprocessing needs
Exporting
ONNX
export_bento_resources
The service implementation
The service configuration files
The reference dataset
The
export_bento_resources
method
Specifying your hyperparameters (optional)
Registering your model with the rest of the system
The model lists
Test-run your model
Grafana dashboard design (optional)
Testing automatic dashboard provisioning
Framework-specific guides
Implementing a model with PyTorch+DistilBERT
The model
PyTorch model module structure
PyTorch utilities
The process
Registering, testing & conclusion
Implementing a model with Scikit-learn
The model
Scikit-learn utilities
The process
Registering, testing & conclusion
Advanced guides
Using DVC with our system
Inferencing with GPUs
Prerequisites
GPU-based inference using Bentos
GPU-based inference for Dockerised services
Without monitoring capabilities
With monitoring capabilities
Automatic hyperparameter tuning
CLI usage
Tune configuration format
References
KTT Hierarchical Classification System
»
System design
View page source
System design
Data adapters
Intermediate format specification
Parquet schema
Hierarchy JSON schema
Theory
The SQL adapter
Design
Supported databases
Configuration schema
Expected view schema
The flatfile adapter
Training stage
The process
Classes
Common classes
PyTorch utilities
Scikit-learn utilities
Exporting your models
ONNX exporting
BentoML exporting
Packaging